
Local Solutions For Individual Customers Worldwide

Manual

STAUFF Protocol on RS485
CAN Open on CANbus

ModBus RTU on RS485

CONTENT
1. STAUFF Communication Protocol .. 4

1.1. Command Overview ...4

1.2. Read Current Readings Command “Rr” ...5

1.3. Read Memory Command “Rm” ...6

1.4. Read Config Data Command “Rc” ..6

1.5. Read Version and Serial Number Command “Rv” ...7

1.6. Appendix A – Parameter Addresses ..7

2. CanBus .. 8

2.1. CAN Interface ..8

2.2. OCS-CAN Specification ..8

2.3. Connection Details ..8

2.4. CANOpen Communication ..9

2.4.1. Summary of the CANOpen functions ...9

2.4.2. Object Dictionary Communication Profile ...9

2.4.3. Object Dictionary Device Profile – Analogue Input Function Block ...11

2.5. CAN Communication without CANOpen Functionality ...12

2.5.1. Basic Configuration – examples of common settings ..12

2.5.2. Network Operation without CANOpen Master ..14

2.5.3. Reading and Writing Parameters and Values ..15

2.5.4. Reading the Ambient (Sensor) Temperature I32 format ..15

2.5.5. Reading the Oil Condition Cal Zero Voltage ..16

2 www.stauff.com

2.5.6. Writing the Oil Condition Cal Zero Voltage ..16

2.5.7. Reading the Oil Data String from the Oil Database ...16

2.5.8. Writing the Oil Data String to the Oil Database ...17

2.5.9. Reading the Hardware Version No. from the sensor ..18

2.5.10. Reading the Software Version No. from the sensor ..19

2.5.11. Reading the Serial No. from the sensor...19

2.6. Revision History ..19

3. Modbus .. 20

3.1. Hardware ...20

3.2. Configurable Parameters ...20

3.3. Communication Mode ...20

3.4. Message Framing ...20

3.5. Function Codes ..21

3.5.1. Response ..22

3.6. Calibrating the Probe ...23

www.stauff.com 3

1. STAUFF Communication Protocol

The command protocol and language for the STAUFF serial communications uses a binary command format communicating over

a half duplex RS232 or RS485 interface. The serial configuration must be set to 8 bits with no parity and will initially communicate

at 9600 baud. The STAUFF unit operates in a slave mode, with the serial device which controls the communications (e.g. the

monitoring computer) acting as master and issuing commands to which the slave will reply. STAUFF will not transmit any data

except in response to a command from the master, and will expect no further commands until the last command has been replied

to.

Commands are multiple sequences of bytes which must be interpreted as a complete data string before the correct action and

response can be determined. Any command which is not interpreted and verified will cause the command interpreter to reset back

to its initial state, and any interruption of communications of longer than 1s will cause the same result. The master must therefore

check for correct response in all cases and re-send any commands which have been corrupted or mis-interpreted.

The detailed structure of commands is as detailed below.

The command structure is as follows:-

BYTE 0 “!” WAKE-UP CODE

Byte 1 <count> number of bytes to follow, including <cksm> and <count>

Byte 2 <iaddr> Single byte instrument address

Byte 3&4 <cmd> Two byte command

Bytes 5 to n-1* <data> Optional, depending on the command

Byte n, n+1* <cksm> 16 bit inverse checksum of all preceding bytes including acknowledge

*n = <count-2>

The response structure is as follows:

BYTE 0 “!” WAKE-UP CODE

Byte 1 <count> number of bytes to follow, including <cksm> and <count>

Byte 2 to n-1 <response> Optional, depending on the command

Byte n, n+1* <cmd> 16 bit inverse checksum of all preceding bytes including acknowledge

CHECKSUM

The checksum is calculated by creating an unsigned 16 bit sum of all preceding data bytes, discarding any overflow and then

subtracting the result from 65535.

1.1. Command Overview
(see below for detailed description of data and response strings)

Commands are divided into two categories:

 ►Read commands which read data from the STAUFF unit, beginning “R”

<CMD> DESCRIPTION <DATA> <RESPONSE>

“Rc” Read config settings 2 byte address plus 1 byte <length> <length+2> bytes

“Rm” Read system memory 2 byte address plus 1 byte <length> <length+2> bytes

“Rr” Read current readings 2 byte address plus 1 byte <length> <length+2> bytes

“Rv” Read version and serial no 2 byte address plus 1 byte <length> <length+2> bytes

4 www.stauff.com

 ►Write commands which write data to the STAUFF unit, beginning “W”

<CMD> DESCRIPTION <DATA> <RESPONSE>

“Wc” Write channel settings 2 byte address plus 1 byte <length> plus <length> data 4 bytes

“Wm” Write system memory 2 byte address plus 1 byte <length> plus <length> data 4 bytes

1. Read commands allow access to current channel and system settings for confirmation and management of the unit’s operation

and current measurements (readings) acquired by the units. Note that all commands use exactly the same mechanism as

“Read Memory”, accessing system memory but adding the address onto a starting address appropriate to the command; thus

“Read Channel Settings” with address 0x03 and length 0x06 reads six bytes, starting from the third byte of the Setup structure

within system memory.

2. Write commands allow the remote configuration of current channel and system settings for management of the units’

operation, and modification of the unit’s system memory, for use in monitoring and debugging operations only.

1.2. Read Current Readings Command “Rr”
This command has two items of data, a two byte <starting address> and a single byte <length>. It commands the STAUFF unit

addressed by <iaddr> to transmit <length> bytes from <starting address> relative to the start of the current readings array for

each of the three channels within the unit. Each reading comprises three bytes of data in 24 bit floating point format and must be

interpreted as such by the receiving system. If the command is correctly interpreted, the STAUFF unit addressed will acknowledge

the command with the Ack code, echo the number of bytes it will transmit, and send a response containing the data requested,

followed by a checksum. If the command is not correctly interpreted, the STAUFF unit addressed will acknowledge with the Error

code and a checksum. If the unit addressed cannot be found, there will be no reply.

The command string is 10 bytes long (no. of bytes in each field as subscript):

“!”,<091>,<iaddr1>,“R”,“r”,<start address2>,<length*1>,<cksm2>

(*length = 0x0C)

The response string comprises the acknowledge character, the <count> of bytes to follow and then <length> bytes of data,

followed by a 16 bit checksum. In its most common usage as used to download all three channel readings, this will comprise 9

bytes of data, as follows:

Bytes 0-3 32 bit floating point representation of Oil Temp value, in C (unless otherwise scaled)

Bytes 4-7 32 bit floating point representation of Ambient Temp value, in C (unless otherwise scaled)

Bytes 8-11 32 bit floating point representation of Oil Condition value, in %

Thus the response string is <length> + 4 bytes long (no. of bytes in each field as subscript):

“A”,<length+21>,<length bytes of data>,<cksm2>

Or, in case of error:“E”,<021>,< FFB82>

www.stauff.com 5

1.3. Read Memory Command “Rm”
This command has two items of data, a two byte starting <address> and a single byte <length>, allowing a read of up to 256

addresses from system memory. It commands the STAUFF unit addressed by <iaddr> to transmit <length> memory bytes starting

at <address>. If the command is correctly interpreted, the STAUFF unit addressed will acknowledge the command with the Ack

code, echo the number of bytes it will transmit, and send a response containing all the data requested, followed by a checksum.

If the command is not correctly interpreted, or the starting <address> is outside the range of system memory, the STAUFF unit

addressed will acknowledge with the Error code and a checksum. If the unit addressed cannot be found, there will be no reply.

The command string is 10 bytes long (no. of bytes in each field as subscript):

“!”,<091>,<iaddr1>,“R”,“m”,<record no2>,<length1>,<cksm2>

The response string comprises the acknowledge character, the <count> of bytes to follow and then <length> bytes, followed by a

16 bit checksum.

Thus the response string is (4 + <length>) bytes long (no. of bytes in each field as subscript):

“A”,<length+21>,<byte 1>,<byte 2>,...,<byte n*>,<cksm2>

(*n = length)

or, in case of error: “E”,<021>,< FFB82>

1.4. Read Config Data Command “Rc”
This command has two items of data, a two byte <starting address> and a single byte <length>. It commands the STAUFF

unit addressed by <iaddr> to transmit <length> bytes from <starting address> relative to the start of the channel settings and

alarm array for each of the three channels within the unit, and the two relays and eight alarm definitions. Config settings are as

defined below and must be correctly interpreted by the receiving system. If the command is correctly interpreted, the STAUFF

unit addressed will acknowledge the command with the Ack code, echo the number of bytes it will transmit, and send a response

containing the data requested, followed by a checksum. If the command is not correctly interpreted, the STAUFF unit addressed

will acknowledge with the Error code and a checksum. If the unit addressed cannot be found, there will be no reply.

The command string is 10 bytes long (no. of bytes in each field as subscript):

“!”,<091>,<iaddr1>,“R”,“c”,<start address2>,<length1>,<cksm2>

The response string comprises the acknowledge character, the <count> of bytes to follow and then <length> bytes of data,

followed by a 16 bit checksum. The data returned will be dependent on the particular parameters specified by the start address, as

detailed in Appendix A below.

Thus the response string is <length> + 4 bytes long (no. of bytes in each field as subscript):-

“A”,<length+21>,<length bytes of data>,<cksm2>

or, in case of error:- “E”,<021>,< FFB82>

6 www.stauff.com

1.5. Read Version and Serial Number Command “Rv”
This command has two items of data, a two byte <starting address> and a single byte <length>. It commands the STAUFF unit

addressed by <iaddr> to transmit <length> bytes from <starting address> relative to the software Version No. variable. Version

and Serial No. information is as defined below and must be correctly interpreted by the receiving system. If the command is

correctly interpreted, the STAUFF unit addressed will acknowledge the command with the Ack code, echo the number of bytes

it will transmit, and send a response containing the data requested, followed by a checksum. If the command is not correctly

interpreted, the STAUFF unit addressed will acknowledge with the Error code and a checksum. If the unit addressed cannot be

found, there will be no reply.

The command string is 10 bytes long (no. of bytes in each field as subscript):

“!”,<091>,<iaddr1>,“R”,“v”,<start address2>,<length1>,<cksm2>

The response string comprises the acknowledge character, the <count> of bytes to follow and then <length> bytes of data,

followed by a 16 bit checksum. The start address should be 0000 to return:-

Software Version No: 4 byte floating point version no.

Thus the response string is <length> + 4 bytes long (no. of bytes in each field as subscript):-

“A”,<length+21>,<length bytes of data>,<cksm2>

or, in case of error: “E”,<021>,< FFB82>

1.6. Appendix A – Parameter Addresses
Parameter Start Addr Access

Cal Zero 0x0000 R/W

Instrument Address 0x002C R/W

Serial Type 0x002D R/W

Max Temp 0x002E RO

Serial No. 0x004E RO

Oil Data String 0x0056 R/W

Hardware Version No. 0x007B RO

CAN Transmission Type 0x00A4 R/W

CAN Event Timer 0x00A5 R/W

CAN TPDO settings 0x00A7 R/W

Filter TC 0x00EF R/W (V2.10+)

Baud Rate 0x00F0 R/W (V2.10+)

CAN Bit Rate 0x00F1 R/W (V2.10+)

www.stauff.com 7

2. CanBus
The OCS-CAN Oil Quality Sensor measures the Oil Condition, Oil Temperature and Ambient (Sensor) Temperature. The range is

from a nominal -20% to +60% Oil Condition units and -30 to +130C. The measured value is transmitted on the CAN-bus using the

CANOpen protocol based on the CAN in Automation standard profile CiA DS 404 V1.2. The Sensor samples at 100 samples per

second, filters and converts the raw signal to a conditioned output signal.

The CAN interface uses a default bit rate of 125 kb/s with 11 bit identifiers.

The CAN protocol complies with the CANOpen specification DS301 and the Oil Quality Sensor conforms to CANOpen device

profile DS404. Node Guarding and Emergency messages are implemented to ensure high reliability.

2.1. CAN Interface
The Sensor uses a full CAN controller specified to conform with CAN 2.0B. The physical layer of the 2 wire interface is specified

according to ISO 11898. The wires are protected against short circuit and noise emission is minimized. No bus termination resistors

are included within the sensor.

2.2. OCS-CAN Specification
Supply voltage: +9 to +30 Vd.c.

Current consumption: 50mA max. when quiescent, 100mA max. with CAN active 30-40mA typical

CAN physical layer: 2 wire interface @ 5V d.c. voltage levels a/c to ISO 11898

 Short circuit protected

CAN bitrate: 125kbit/s

Bus termination: External

Protocol: CANOpen DS301, Device Profile DS404

Environment: noise emission according to EN 50 081-2

 Noise immunity according to EN 50 082-2

Operating temperature: -20 to +130C

Storage temperature: -40 to +150C

2.3. Connection Details
The sensor uses a Lumberg 6 pin 030 series male connector with the following pin assignments: -

P1: Analog 4-20mA Oil Condition output (active, current sourcing)

P2: Analog 4-20mA Oil Temp output (active, current sourcing)

P3: +9 to +30V d.c. power supply

P4: 0V

P5: CANL/RS485A

P6: CANH/RS485B

8 www.stauff.com

2.4. CANOpen Communication
2.4.1. Summary of the CANOpen functions
CANOpen type: NMT slave

Network bootup: Minimum bootup

COB ID: pre-defined connection set, SDO

Node ID: object (specific entry – read/write, default 1)

Bitrate: object (specific entry – read only, fixed 125kbit/s)

Number of PDOs: PDO1 synchronous or asynchronous configurable

Emergency message: supported

Node Guarding: supported

Device Profile: DS404

2.4.2. Object Dictionary Communication Profile

INDEX
(HEX)

SUB
INDEX

NAME TYPE ACCESS DEFAULT COMMENT

1000 00 Device Type U32 RO 0x000E0194 DSP404 analog output, input & digital output

1001 00 Error Register U8 RO 0x00

Error Register definition (index 0x1001); 0 = no error, 1 = error:

B0: Global Error

B1: unused

B2: unused

B3: Temperature Error

B4: CAN Communication Error

B5: Oil Quality Error

B6: unused

B7: unused

INDEX
(HEX)

SUB
INDEX

NAME TYPE ACCESS DEFAULT COMMENT

1005 00 COB-ID SYNC U32 RO 0x80

1008 00 Manufacturer Device Name VIS STR RO “Oil Quality Sensor” Sales Code

1009 00 Manufacturer Hardware Version VIS STR RO “V12” Build Version

100A 00 Manufacturer Software Version VIS STR RO “V1.12” Software Version

100C 00 Guard Time U16 RO 20000

100D 00 Life Factor U16 RO 1

1018 Identity Object

00 Number of entries U8 RO 0x4

01 Vendor ID U32 RO 0x32F Vendor ID

02 Product Code U32 RO 111021 Sales Code

03 Revision No. U32 RO 0900

04 Serial No. U32 RO S/No.

www.stauff.com 9

INDEX
(HEX)

SUB
INDEX

NAME TYPE ACCESS DEFAULT COMMENT

1800 Transmit PDO parameter

00 Number of entries U8 RO 0x5

01 COB-ID used by PDO U32 RO 0x180 0x180 + Node-ID

02 Transmission Type U8 RW 0x1

0x01 = every SYNC,

0x02 to 0xF0 = every 2nd to 240th

SYNC,

0xFF = ASYNC according to Event

Timer

03 Inhibit Time U16 RO 0x0

04 Reserved U8 RO 0x0

05 Event Timer U16 RW 0x3E8 Interval in ms, 1s default

1A00 Transmit PDO1 mapping

00 Number of entries U8 RO 0x02

01
PDO mapping for the 1st

application object to be mapped
U32 RW 0x61300320

Oil Condition as I32: 0x91300320

Oil Condition as F32 0x61300320

02
PDO mapping for the 2nd

application object to be mapped
U32 RW 0x61300120

Oil Temperature as I32: 0x91300120

Oil Temperature as F32: 0x61300120

INDEX
(HEX)

SUB
INDEX

NAME TYPE ACCESS DEFAULT COMMENT

1F80 00 NMT startup U32 RW 0x0x

0x0x: NMT master must start NMT slave.

0x1x: NMT slave will then enter Pre-operational

state (initialization) followed by Operational state

automatically on successful initialization.

Note: x = 0 for RS232, 1 for RS485, 2 for CAN

INDEX
(HEX)

SUB
INDEX

NAME TYPE ACCESS DEFAULT COMMENT

4000 00 Serial Type U8 RW 0x01

0 for RS232, 1 for RS485, 2 for CAN. Note: NMT

startup is stored in the same variable; bit 0x10 forces

self startup.

4001 00
Sensor

Address
U8 RW 0x01

Node ID for CAN, Sensor Address for other serial

interfaces

4002 00 Baudrate U8 RO 0x00 9600 Baud ONLY

4003 00 CAN Bitrate U8 RW 0x05

0 = 1Mb/s, 1 = 800 kb/s, 2 = 500kbit, 3 = 500kb/s

(duplicated), 4 = 250kb/s, 5 = 125kb/s (default), 6 =

50kb/s, 7 = 20kb/s

4004 00
Sensor ID

String

VIS

STR
RO

“Sensor ID

string”
Writable externally to CAN

10 www.stauff.com

2.4.3. Object Dictionary Device Profile – Analogue Input Function Block
INDEX
(HEX)

SUB
INDEX

NAME TYPE ACCESS DEFAULT COMMENT

6110 AI Sensor Type

00 Number of entries U8 RO 0x3

01 AI Sensor Type 1 U16 RO 0x64 100 = temperature sensor

02 AI Sensor Type 2 U16 RO 0x64 100 = temperature sensor

03 AI Sensor Type 3 U16 RO 0x2710
10000 = oil condition sensor

(mfr defined)

6124 AI Input Offset

00 Number of entries U8 RO 0x1

01 AI Input Offset 3 F32 RW Oil Condition Cal. Zero voltage

6125 AI Autozero

00 Number of entries U8 RO 0x01

01
AI Input Autozero

3
U32 WO Autozero Oil Condition

6126 AI Scaling Factor

00 Number of entries U8 RO 0x01

01 AI Input Scaling 3 F32 RO Oil Condition Gain %

6127 AI Scaling Offset

00 Number of entries U8 RO 0x05

01 AI Scaling Offset 1 F32 RW Oil Normalisation Param 1

02 AI Scaling Offset 2 F32 RW Oil Normalisation Param 2

03 AI Scaling Offset 3 F32 RW Oil Normalisation Param 3

04 AI Scaling Offset 4 F32 RW Oil Normalisation Param 4

05 AI Scaling Offset 5 F32 RW Oil Normalisation Param 5

6130 AI Input PV

00 Number of entries U8 RO 0x03

01 AI Input PV1 F32 RO Oil Temp. Value

02 AI Input PV2 F32 RO Sensor Temp. Value

03 AI Input PV3 F32 RO Oil Condition Value

6132
AI Decimal Digits

PV

0: integer scaled as is

1: integer scaled *10

2: integer scaled *100 etc.

00 Number of entries U8 RO 0x03

01 AI Dec. Digits PV1 U8 RW 0x02 Oil Temp. Integer Scaling

02 AI Dec. Digits PV2 U8 RW 0x02 Sensor Temp. Integer Scaling

03 AI Dec. Digits PV3 U8 RW 0x02 Oil Condition Integer Scaling

6148 AI Span Start

00 Number of entries U8 RO 0x03

01 AI Span Start 1 F32 RO Oil Temp. Min Range

01 AI Span Start 2 F32 RO Sensor Temp. Min Range

01 AI Span Start 3 F32 RO Oil Cond. Min Range

6149 AI Span End

00 Number of entries U8 RO 0x03

01 AI Span End 1 F32 RO Oil Temp. Max Range

01 AI Span End 2 F32 RO Sensor Temp. Max Range

01 AI Span End 3 F32 RO Oil Cond. Max Range

www.stauff.com 11

INDEX
(HEX)

SUB
INDEX

NAME TYPE ACCESS DEFAULT COMMENT

61A0 AI Filter Type
0: unfiltered

1: exponential average

00 Number of entries U8 RO 0x01

01 AI Filter Type 1 U8 RO 0x01 Exponential average

61A1 AI Filter Constant

00 Number of entries U8 RO 0x01

01 AI Filter Const. 1 U8 RO 0x07 1/(2^<Filter Const)* new sample

6F20

00 Number of entries U8 RO 0x01

01 AI Oil Data String STR RW Oil Data String

9130 AI Input PV

00 Number of entries U8 RO 0x03

01 AI Input PV1 I32 RO Oil Temp. Value

02 AI Input PV2 I32 RO Sensor Temp. Value

03 AI Input PV3 I32 RO Oil Condition Value

9148 AI Span Start

00 Number of entries U8 RO 0x03

01 AI Span Start 1 I32 RO Oil Temp. Min Range

01 AI Span Start 2 I32 RO Sensor Temp. Min Range

01 AI Span Start 3 I32 RO Oil Cond. Min Range

9149 AI Span End

00 Number of entries U8 RO 0x03

01 AI Span End 1 I32 RO Oil Temp. Max Range

01 AI Span End 2 I32 RO Sensor Temp. Max Range

01 AI Span End 3 I32 RO Oil Cond. Max Range

2.5. CAN Communication without CANOpen Functionality
2.5.1. Basic Configuration – examples of common settings
The OCS-CAN Sensor can be used successfully in CAN networks without full CANOpen functionality. Before using the Sensor

within the network the following should be noted and configured where necessary. Note that you will need to know the current

Node ID to communicate with the sensor; if you are unsure of this value and it has been changed from the default, you can identify

it from the boot-up message issued by the sensor on startup. This will be

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Message 0x700+ NodeID 1 0x00 NA NA NA NA NA NA NA

Thus a startup message from a COB-ID of 0x71C indicates that the sensor has a Node ID of 0x1C, or 28 decimal.

Bitrate: Object 0x4003, subindex 0. This is, by default, 125kbits/s (CAN bitrate 5) but can be changed – see Chapter 2.4.2 above for

details.

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command
0x600+

NodeID
8 0x40 0x03 0x40 0x00 NA NA NA NA

Reply
0x580+

NodeID
8 0x40 0x03 0x40 0x00 0x05 0x00 0x00 0x00

12 www.stauff.com

To change the bitrate to <Bitrate> use the following command. Note that the number to be entered in this field is the bitrate code,

from 0 to 7, not the actual bits/s. Note that you must restart the sensor to make this change active.

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command
0x600+

NodeID
0x08 0x2F 0x03 0x40 0x00 <bitrate> NA NA NA

Reply
0x580+

NodeID
0x08 0x60 0x03 0x40 0x00 NA NA NA NA

Node ID: Object 0x4001, subindex 0. This is 0x01 by default and can be changed. Valid values are between 1 and 127 (0x7f). To read

use the following command

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command
0x600+

NodeID
0x08 0x40 0x01 0x40 0x00 NA NA NA NA

Reply
0x580+

NodeID
0x08 0x40 0x01 0x40 0x00 <NodeID> 0x00 0x00 0x00

To change the Node ID to New ID use the following command

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command
0x600+

NodeID
0x08 0x2F 0x01 0x40 0x00 <NewID> NA NA NA

Reply
0x580+

NodeID
0x08 0x60 0x01 0x40 0x00 NA NA NA NA

The sensor will need restarting (powering off and then on again) before the change becomes effective and the new ID is valid. Any

changes made are saved automatically in non-volatile memory.

Transmission Type: Object 0x1800, subindex 2. This is 0x00 (send PDO response every SYNC command) by default and can be

changed. Values from 0x00 to 0xF0 represent synchronous response every <TType>+1 SYNC commands and 0xFF represents an

asynchronous (timed) response every <Event Timer> ms (default 1000ms). See below to change the Event Timer value. To read use

the following command

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command
0x600+

NodeID
0x08 0x40 0x00 0x18 0x02 NA NA NA NA

Reply
0x580+

NodeID
0x08 0x4F 0x00 0x18 0x02 <TType> NA NA NA

To change the Transmission Type to New Type use the following command

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command
0x600+

NodeID
0x08 0x2F 0x00 0x18 0x02 <NewType> NA NA NA

Reply
0x580+

NodeID
0x08 0x60 0x00 0x18 0x02 NA NA NA NA

www.stauff.com 13

Event Timer: Object 0x1800, subindex 5. This is 0x3E8 (1000 ms) by default and can be changed. Values from 0x0064 to 0xFFFF

(decimal 100 to 65535) will generate a Timer Event every <Timer> ms, which can be used to generate a timed PDO response – see

above to select Timed PDO responses. To read use the following command

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command
0x600+

NodeID
0x08 0x40 0x00 0x18 0x05 NA NA NA NA

Reply
0x580+

NodeID
0x08 0x40 0x00 0x18 0x05

<Timer

LSB>

<Timer

MSB>
NA NA

To change the Event Timer value to <NewTime> use the following command

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command
0x600+

NodeID
0x08 0x2E 0x00 0x18 0x05

<NewTime

LSB>

<NewTime

MSB>
NA NA

Reply
0x580+

NodeID
0x08 0x60 0x00 0x18 0x05 NA NA NA NA

PDO Data Selection and Format: Object 0x1A00, subindex 1 and 2. These values are 0x61300320 (Oil Condition, F32 format) and

0x61300120 (Oil Temperature, F32 format) by default and can be changed. New variables, in different formats can be selected from

the Object Dictionary as detailed above. To read use the following command.

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command
0x600+

NodeID
0x08 0x40 0x00 0x1A 0x01(2) NA NA NA NA

Reply
0x580+

NodeID
0x08 0x40 0x00 0x1A 0x01(2)

<Variable

LSB>

<Variable

byte1>

<Variable

byte2>

<Variable

MSB>

The Variable bytes for the default configuration would be 20, 03, 30, 61 for the oil condition value in F32 format, and 20, 01, 30, 61

for the oil temperature in F32 format.

To change the PDO Data Selection and Format to <NewPDO> use the following command

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command
0x600+

NodeID
0x08 0x23 0x00 0x1A 0x01(2)

<Variable

LSB>

<Variable

byte1>

<Variable

byte2>

<Variable

MSB>

Reply
0x580+

NodeID
0x08 0x60 0x00 0x1A 0x01(2) NA NA NA NA

For example, the Variable bytes needed to set the two values returned by the PDO to Oil Condition in I32 format (0x91300120) and

Oil Temperature in I32 format (0x91100120) would entail writing 20, 03, 30, 91 to subindex 01, and 20, 01, 30, 91 to subindex 02 –

see above in the Object Dictionary.

2.5.2. Network Operation without CANOpen Master
After connecting the Sensor to the network and applying power, the Sensor will enter the pre-operational state and issue the boot-

up message as described above. In normal operation with a CANOpen Master present, the Master will then issue a command to

set the Sensor into a fully operational mode and take over control. If the Master is not present this same operation can be done

by setting the Sensor to Self-Starting mode. This is done by setting NMT Startup, Object 0x1F80, to 0x12 and then restarting the

Sensor, as follows

14 www.stauff.com

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command 0x600+

NodeID

0x08 0x2F 0x80 0x1F 0x00 0x12 NA NA NA

Reply 0x580+

NodeID

0x08 0x60 0x80 0x1F 0x00 NA NA NA NA

The Sensor will now be in Self-Starting mode and will automatically enter full Operational mode after every startup. SYNC

commands can then be issued by any other CANOpen device to elicit the Sensor’s normal PDO response which is to send the Oil

Condition and Temperature in 32-bit floating point format. This will be as follows: -

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command 0x080 0x00 NA NA NA NA NA NA NA NA

Reply
0x580+

NodeID
0x08 <Tb0> <Tb1> <Tb2> <Tb3> <Cb0> <Cb1> <Cb2> <Cb3>

Where Tb3 to Tb0 are the most significant to least significant bytes of the 32 bit floating point Oil Temperature value and Cb3

to Cb0 similarly for the Oil Condition. Thus values of 0A,D7,D5,41,7B,14,AE,3F in databytes B0 to B7 equates to hexadecimal

values of 41D5D70A and 3FAE147B (byte order rearranged) and floating point values of 26.73C and 1.36%. The Node ID of the

sensor returning this data can be inferred from the ID byte as defined in the CAN Open specification for TPDO transmissions. This

means that multiple sensors may be connected to the same CAN-bus as long as they have different Node IDs, and if they are all

configured in this way, each will return the above response to a single SYNC command

2.5.3. Reading and Writing Parameters and Values
Individual parameters may be read or written according to the RO,WO or RW) or equivalent) setting of that object using the

standard SDO format as defined within the CAN Open specification. The following examples show the process of reading a value,

and both reading and writing a parameter.

2.5.4. Reading the Ambient (Sensor) Temperature I32 format
The Sensor Temperature may be read as a 32 bit integer by performing an SDO read of the object at index 0x9130, sub-index 02 as

specified in the Object Dictionary (see chapter 2.4.3 , Analogue Input Function Block). The command is as follows:-

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command 0x600+

NodeID

0x08 0x40 0x30 0x91 0x02 NA NA NA NA

Reply 0x580+

NodeID

0x08 0x43 0x30 0x91 0x02 <Tb0> <Tb1> <Tb2> <Tb3>

The value is returned as a signed integer number in bytes Tb0 to Tb3, where Tb3 is the MSB and Tb0 the LSB. The value is

multiplied by the power of ten specified in PV Decimal Digits at index 0x6132, sub-index 02. Thus with a default PV Decimal Digits

value of 2, the floating point value is multiplied by 10^2, or 100 so that the last two decimal digits are fractional after an implied

decimal point so a decimal value of 3214 would translate to 32.14C.

www.stauff.com 15

2.5.5. Reading the Oil Condition Cal Zero Voltage
The Oil Condition Cal Zero Voltage may be read as a 32 bit floating point number by performing an SDO read of the object at

index 0x6124, sub-index 01 as specified in the Object Dictionary (see chapter 2.4.3 , Analogue Input Function Block). The command

is as follows: -

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command
0x600+

NodeID
0x08 0x40 0x24 0x61 0x01 NA NA NA NA

Reply
0x580+

NodeID
0x08 0x43 0x24 0x61 0x01 <Zb0> <Zb1> <Zb2> <Zb3>

The value is returned as a floating point number in bytes Zb0 to Zb3, where Zb3 is the MSB and Zb0 the LSB.

2.5.6. Writing the Oil Condition Cal Zero Voltage
The Oil Condition Cal Zero Voltage may be changed by performing an SDO write of the object at index 0x6124, sub-index 01 as

specified in the Object Dictionary (see chapter 2.4.3 , Analogue Input Function Block). The command is as follows: -

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command
0x600+

NodeID
0x08 0x2F 0x24 0x61 0x01 <Zb0> <Zb1> <Zb2> <Zb3>

Reply
0x580+

NodeID
0x08 0x60 0x24 0x61 0x01 NA NA NA NA

The value to be written is formatted as above. In this way the calibration of the sensor may be adjusted.

2.5.7. Reading the Oil Data String from the Oil Database
The Oil Condition Cal Data String may be read by performing an SDO read (Domain Upload) from the object at index 0x6F20, sub-

index 01 as specified in the Object Dictionary (see chapter 2.4.3 , Analogue Input Function Block). The command is as follows: -

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command
0x600+

NodeID
0x08 0x40 0x20 0x6F 0x01 0x00 0x00 0x00 0x00

Reply
0x580+

NodeID
0x08 0x41 0x20 0x6F 0x01 0x25 NA NA NA

Command
0x600+

NodeID
0x08 0x60 0x20 0x6F 0x01 0x00 0x00 0x00 0x00

Reply
0x580+

NodeID
0x08 0x60 0x31 0x43 0x5E 0xB8 0xDB 0x00 0x43

Command
0x600+

NodeID
0x08 0x70 0x20 0x6F 0x01 0x00 0x00 0x00 0x00

Reply
0x580+

NodeID
0x08 0x70 0x17 0xA4 0x35 0x7B 0x00 0x35 0x43

Command
0x600+

NodeID
0x08 0x60 0x20 0x6F 0x01 0x00 0x00 0x00 0x00

Reply
0x580+

NodeID
0x08 060 0x00 0x00 0x50 0xA0 0x8A 0x1F 0x87

Command
0x600+

NodeID
0x08 0x70 0x20 0x6F 0x01 0x00 0x00 0x00 0x00

16 www.stauff.com

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Reply
0x580+

NodeID
0x08 0x70 0xFA 0x0A 0xBA 0xAD 0x81 0x00 0xF1

Command
0x600+

NodeID
0x08 0x60 0x20 0x6F 0x01 0x00 0x00 0x00 0x00

Reply
0x580+

NodeID
0x08 0x60 0xD1 0x17 0x00 0x3E 0xB7 0xAA 0xA8

Command
0x600+

NodeID
0x08 0x70 0x20 0x6F 0x01 0x00 0x00 0x00 0x00

Reply
0x580+

NodeID
0x08 0x70 0x00 0x3E NA NA NA NA NA

The Oil String Data comprises bytes B1 to B7 successively for each Reply message, plus B1 and B2 of the last

message, in that order. The example shown above corresponds to Generic Mineral 15W40, which has string

31435EB8DB004317A4357B003543000050A08A1F87FA0ABAAD8100F1D117003EB7AAA8003E.

2.5.8. Writing the Oil Data String to the Oil Database
The Oil Condition Cal Data String may be changed by performing an SDO write (Domain Download) to the object at index 0x6F20,

sub-index 01 as specified in the Object Dictionary (see chapter 2.4.3 , Analogue Input Function Block). The command is as follows: -

www.stauff.com 17

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command
0x600+

NodeID
0x08 0x20 0x20 0x6F 0x01 0x00 0x00 0x00 0x00

Reply
0x580+

NodeID
0x08 0x60 0x20 0x6F 0x01 0x25 NA NA NA

Command
0x600+

NodeID
0x08 0x00 0x03 0x66 0xEE 0xEF 0x6E 0xC4 0x41

Reply
0x580+

NodeID
0x08 0x20 0x20 0x6F 0x01 0x25 NA NA NA

Command
0x600+

NodeID
0x08 0x10 0xE6 0xBD 0x08 0x1C 0xB6 0x19 0x00

Reply
0x580+

NodeID
0x08 0x30 0x20 0x6F 0x01 0x25 NA NA NA

Command
0x600+

NodeID
0x08 0x00 0x6F 0x77 0x5A 0x3F 0x66 0x3A 0xF0

Reply
0x580+

NodeID
0x08 0x20 0x20 0x6F 0x01 0x25 NA NA NA

Command
0x600+

NodeID
0x08 0x10 0x03 0x66 0x06 0x3F 0x12 0xA7 0x49

Reply
0x580+

NodeID
0x08 0x30 0x20 0x6F 0x01 0x25 NA NA NA

Command
0x600+

NodeID
0x08 0x00 0xA3 0x03 0x02 0x1B 0x6F 0x12 0x66

Reply
0x580+

NodeID
0x08 0x20 0x20 0x6F 0x01 0x25 NA NA NA

Command
0x600+

NodeID
0x08 0x1B 0x3F 0xBF NA NA NA NA NA

Reply
0x580+

NodeID
0x08 0x30 0x20 0x6F 0x01 0x25 NA NA NA

The value to be written is formatted as above. In this way the calibration of the sensor may be adjusted. The Oil String Data

comprises bytes B1 to B7 successively for each Reply message, plus B1 and B2 of the last message, in that order. The example

shown above has string 0366EEEF6EC441E6BD081CB619006F775A3F663AF00366063F12A749A303021B6F12663FBF which

corresponds to Avia Bantleon Synto.

2.5.9. Reading the Hardware Version No. from the sensor
The Hardware Version No. may be read as a 3 byte string by performing an SDO read (Expedited Upload) of the object at index

0x1009, sub-index 00 as specified in the Object Dictionary (see chapter 2.4.2 , Communication Profile). The command is as follows: -

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command 0x600+

NodeID

0x08 0x40 0x09 0x10 0x00 NA NA NA NA

Reply 0x580+

NodeID

0x08 0x43 0x09 0x10 0x00 <HVb0> <HVb1> <HVb2> NA

The value is returned as a string value in bytes HVb0 to HVb2, where HVb0 is the first character in the string and HVb2 the last

character.

18 www.stauff.com

2.5.10. Reading the Software Version No. from the sensor
The Software Version No. may be read as a 5 byte string by performing an SDO read (Domain Upload) of the object at index

0x100A, sub-index 00 as specified in the Object Dictionary (see chapter 2.4.2, Communication Profile). The command is as follows: -

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command 0x600+

NodeID
0x08 0x40 0x0A 0x10 0x00 NA NA NA NA

Reply 0x580+

NodeID
0x08 0x41 0x0A 0x10 0x00 0x05 NA NA NA

Command 0x600+

NodeID
0x08 0x60 0x0a 0x10 0x00 0x00 0x00 0x00 0x00

Reply 0x580+

NodeID
0x08 0x05 <SVb0> <SVb1> <SVb2> <SVb3> <SVb4> NA NA

The value is returned as a string value in bytes SVb0 to SVb4, where SVb0 is the first character in the string and SVb4 the last

character.

2.5.11. Reading the Serial No. from the sensor
The Serial No. may be read as a 32-bit unsigned integer by performing an SDO read (Expedited Transfer) of the object at index

0x1018, sub-index 04 as specified in the Object Dictionary (see chapter 2.4.2, Communication Profile). The command is as follows: -

ID DLC B0 B1 B2 B3 B4 B5 B6 B7

Command
0x600+

NodeID
0x08 0x40 0x18 0x10 0x04 NA NA NA NA

Reply
0x580+

NodeID
0x08 0x43 0x18 0x10 0x04 <SNb3> <SNb2> <SNb1> <SNb0>

The value is returned as a 32 bit unsigned integer value in bytes SNb3 to SNb0, where SNb3 is the MSB of the value and SNb0 the

last character.

2.6. Revision History
Rev 2: Synchronous PDO transmission every nth SYNC command implemented

 Asynchronous PDO transmission on timer implemented

 Readings and formats transmitted via PDO now selectable

Rev 3: Bitrate index corrected in examples

Rev 4: Database interface now documented

 Configurable Bitrate, Transmission Type, Event Timer and PDO selection and format now documented and

 examples given.

 Examples of Oil Data Base value read and write added.

Rev 5: Hardware Version No format corrected.

 Examples of Hardware Version No., Software Version No. and Serial No. read added.

Rev. 6: Read Sensor ID String added to Object Dictionary.

www.stauff.com 19

3. Modbus

To select Modbus as the preferred communication method, please use the PC/Laptop Software and refer to the appropriate

manual.

3.1. Hardware
The STAUFF serial communication uses an RS485 multi-drop interface.

3.2. Configurable Parameters
The serial configuration must be set to 8 bits with no parity and will communicate at 9600 baud. The OCS operates in a slave mode

with a default ID of 1 which can be preset to suit on register 11 (0x0B), with the serial device which controls the communications

(e.g. the monitoring computer) acting as master and issuing commands to which the slave will reply. OCS will not transmit any data

except in response to a command from the master, and will expect no further commands until the last command has been replied

to.

3.3. Communication Mode
OCS supports communication using the OCS proprietary protocol which uses RS485 in ASCII mode (not covered by this

document), and Modbus RTU protocol which uses RS485 in Hex mode. The suitable method of communication can be set by

presetting register 12 (0x0C) to:

 TDS RS485 1

 ModBus RTU 2

3.4. Message Framing
Message start with a silent interval of at least 3.5 character times then the first field transmitted is assumed to be the device

address.

Following the last transmitted character, a similar interval of at least 3.5 character times marks the end of the message. A new

message can begin after this interval.

The entire message frame must be transmitted as a continuous stream. If a silent interval of more than 1.5 character times occurs

before completion of the frame, the receiving device flushes the incomplete message and assumes that the next byte will be the

address field of a new message.

Similarly, if a message starts earlier than 3.5 character times following a previous message, the receiving device will consider it a

continuation of the previous message. This will set an error, as the value in the final CRC field will not be valid for the combined

messages.

A typical message format is shown below.

START 3.5 Characters

ADDRESS 8 Bits

FUNCTION 8 Bits

DATA 16 Bits

CRC 16 Bits

END 3.5 Characters Time

20 www.stauff.com

3.5. Function Codes
04 (0x04) Read Input Registers

QUERY

This reads the contents of input registers in the slave. The query message specifies the starting register and number of registers to

be read. Information needed to be read from the probe is kept in registers:

PARAMETERS REGISTERS DECIMAL REGISTERS HEX

Oil Temperature *100 0 00

Ambient Temperature * 100 1 01

Oil Condition * 100 2 02

Cal Zero * 100 3 03

Instrument/Node Address 11 0B

Serial Type (RS485/Modbus/CANbus) 12 0C

Maximum Ambient Temp * 100 13 0D

Serial No. 14 0E

Hardware Version Number 15 0F

Software Version Number * 100 16 10

Oil Data String characters 1 & 2 17 11

Oil Data String characters 3 & 4 18 12

Oil Data String characters 5 & 6 19 13

Oil Data String characters 7 & 8 20 14

Oil Data String characters 9 & 10 21 15

Oil Data String characters 11 & 12 22 16

Oil Data String characters 13 & 14 23 17

Oil Data String characters 15 & 16 24 18

Oil Data String characters 17 & 18 25 19

Oil Data String characters 19 & 20 26 1A

Oil Data String characters 21 & 22 27 1B

Oil Data String characters 23 & 24 28 1C

Oil Data String characters 25 & 26 29 1D

Oil Data String characters 27 & 28 30 1E

Oil Data String characters 29 & 30 31 1F

Oil Data String characters 31 & 32 32 20

Oil Data String characters 33 & 34 33 21

Oil Data String characters 35 & 36 34 22

Oil Data String characters 37 (MSB) 35 23

Here is an example of a request to read a single register starting at register 1 (ambient temperature) of device slave 1.

www.stauff.com 21

FIELD NAME Example (Hex)

SLAVE ADDRESS 01

FUNCTION 04

STARTING ADDRESS HI 00

STARTING ADDRESS LO 00

NO. OF REGISTERS HI 00

NO. OF REGISTERS LO 01

CRC CHECK 600A

3.5.1. Response
The register data in the response message are packed as two bytes per register, with the contents right justified within each byte.

For each register, the first byte contains the high order bits and the second contains the low order bits.

Here is an example of a response to above query to read a single register, starting at register 0, ambient temperature.

FIELD NAME Example (Hex)

ADDRESS 01

FUNCTION 04

BYTE COUNT 02

DATA HI 4E

DATA LO 5A

CRC 0CAB

06 (0x06) Write Single Register

QUERY

The Write command specifies the register reference to be preset and allows the remote configuration of channel and system

settings for management of the unit’s operation, and modification for use in monitoring. The registers which hold the configuration

parameters are:

PARAMETERS REGISTERS DECIMAL REGISTERS HEX

Zero Calibration 3 03

Instrument Address 11 0B

Serial Type 12 0C

Here is an example of a request to preset register 11 (instrument address) of device slave 1 to change it to devices slave 4. Note

that changing the instrument address or serial type will only take effect after the sensor is shut down and restarted:

FIELD NAME Example (Hex)

SLAVE ADDRESS 01

FUNCTION 06

STARTING ADDRESS HI 00

STARTING ADDRESS LO 0B

NO. OF REGISTERS HI 00

NO. OF REGISTERS LO 04

CRC CHECK F9CB

RESPONSE

The normal response is an echo of the query, returned after the register contents have been preset.

22 www.stauff.com

Here is an example of a response to above query to preset register 11, instrument address to 4.

FIELD NAME Example (Hex)

SLAVE ADDRESS 01

FUNCTION 06

STARTING ADDRESS HI 00

STARTING ADDRESS LO 0B

NO. OF REGISTERS HI 00

NO. OF REGISTERS LO 04

CRC CHECK F9CB

17 (0x11) Report Slave ID

Returns information about the slave device. Currently returns only the Version No. of the probe firmware.

3.6. Calibrating the Probe
In order to obtain the best accuracy of oil reading you should zero the sensor on a clean sample of oil before use. Ideally this

should be done while the sensor is fully connected to your measuring circuit. Follow the below steps:

If you know that the oil in the application for which you are going to use the sensor is new, clean oil, this can be done while the

probe is fitted to its target application, otherwise the sensor should be immersed in a clean container of new oil and tilted to expel

any air bubbles which may collect in the sensing gap, and then zeroed using the following procedure.

Preset the following command to the probe after 3.5 character time quite time, using the Write Single Register to write to register

3; the data written is unimportant.

FIELD NAME Example (Hex)

SLAVE ADDRESS 01

FUNCTION 06

STARTING ADDRESS HI 00

STARTING ADDRESS LO 03

NO. OF REGISTERS HI 00

NO. OF REGISTERS LO 01

CRC CHECK B80A

Check the response which should be the echo of the query send to the probe.

Repeat stage 2 and 3 so that it has been written 3 times within 10 SECONDS for probe to zero the output in the clean oil sample. If

this write command is not done 3 times within 10 seconds it will be ignored, to ensure that it is not reset accidentally.

DATA FORMAT

STAUFF returns all real (non-integer) values as 16 bit signed integers with the value multiplied by 100 (decimal).

For example a temperature reading of 34.14 degrees C would be returned as 3414 decimal (0D56 hex).

Negative values follow the usual signed format, so -12.34 would be returned as -1234 decimal (Fb2E hex).

www.stauff.com 23

Local Solutions For Individual Customers Worldwide

GERMANY / DEUTSCHLAND
Walter Stauffenberg GmbH & Co. KG

Im Ehrenfeld 4 § 58791 Werdohl

Tel.: +49 23 92 916 0

Fax: +49 23 92 916 160

sales@stauff.com

Globally available through wholly-owned

branches and distributors in all industrial

countries. Full contact details at:

www.stauff.com/contact

Globale Präsenz mit eigenen Niederlassungen

und Händlern in sämtlichen Industrieländern.

Vollständige Kontaktdaten unter:

www.stauff.com/kontakt

